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FLOW SEPARATION FROM RODS AHEAD OF BLUNT 

NOSES AT MACH NUMBER 2.7 

By J i m  J. Jones 

DOD OR. x?cto.10 

An experimental  i nves t iga t ion  i n  t h e  Langley gas dynamics labora tor  
has been made of t he  flow separa t ion  from s lender  rods mounted t o  extend 
forward along t h e  axes of symmetry of blunt-nosed bodies. The mechanism 
of t h e  separa t ion  and i t s  governing c r i t e r i a  a re  discussed. Drag data 
a t  a Mach number of 2.72 f o r  various rod lengths  and nose r a d i i  a t  an 
angle of  a t t ack  of 0' a r e  presented. 

It was found t h a t  t h e  drag coe f f i c i en t s  of b lunt  noses could be 
appreciably reduced by t h e  use of protruding rods. C r i t e r i a  f o r  rod 
length  which gives  lowest drag a re  given. 

INTRODUCTION 

The d e s i r a b i l i t y  of a b lunt ,  rounded nose on a supersonic missi le  
which contains  a seeker  device i s  well-known, and a number of inves t iga-  
t i o n s  have been made of t he  r e s u l t a n t  drag increase.  
refs.  1 t o  3.)  A s tudy of noses i n  which the  t i p  of a basic  ogive i s  
replaced by a near-hemisphere ind ica tes  t h a t  if t h e  nose rad ius  i s  l e s s  
t han  one-quarter of t h e  maximum radius  of t h e  body, t h e  drag increase 
i s  not severe. With increasing nose radius ,  however, t he  drag increases  
very rapidly.  

(See, f o r  instance,  

. 

The flow i n  f r o n t  of a b lunt  nose has been found t o  be e a s i l y  sepa- 
r a t e d  from the  sur face  of a s lender  rod o r  needle which p ro jec t s  forward 
of t h e  nose. (See ref .  4 . )  This separat ion is  a r e s u l t  of t h e  i n t e r -  
a c t i o n  of t he  bow wave and the  boundary l a y e r  on t h e  rod. The separated 
reg ion  i s  found t o  form approximately a con ica l  shape, and t h e  accom- 
panying shock i s  very near ly  the  conica l  shock expected f o r  a s o l i d  cone 
geometr ical ly  s imilar  t o  the  separat ion region. 
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I f  some forward-projecting device can be found which operates s a t i s -  
f a c t o r i l y  under varying conditions of Mach number and angle of a t t ack ,  
p r a c t i c a l  use of t h i s  phenomenon might be made t o  reduce the  drag of 
blunt-nosed miss i les .  The purpose of t h i s  i nves t iga t ion  was t o  study 
t h e  separa t ion  phenomenon a t  an angle of a t t a c k  of 0' so  t h a t  t h e  f a c t o r s  
determining optimum rod length  might be understood. 

SYMBOIS 

cd 

AP 

1 

9 

rb 

rn 

RX 

S 

sb 

X 

Y 

nose-drag c o e f f i c i e n t  bssed on maximum f r o n t a l  area 

pressure r ise  across shock wave 

distance from t i p  of rod t o  nose of model 

l o c a l  dynamic pressure 

rad ius  of model a t  base 

rad ius  of hemispherical nose 

Reynolds number based on d is tance  x 

s t a t i o n  along model ax i s  measured from t i p ,  in.  

l ength  of bas i c  model, in .  

d i s tance  from t i p  of rod t o  poin t  of separa t ion  

rad ius  a t  any poin t  on model, in .  

MODELS AND TESTS 

A sketch of t h e  configurations t e s t e d  i s  shown i n  figure 1. The 
models were f i t t e d  t o  a small strain-gage drag balance. 

Model 1, the  bas i c  configuration, represents  a nose design which 
has a minimum wave-drag c o e f f i c i e n t  f o r  a given f ineness  r a t i o  according 
t o  t h e  slender-body theory. (See ref. 5 . )  The f ineness  r a t i o  used f o r  
model 1 w a s  4.0. The ord ina tes  f o r  t h i s  type of body follow t h e  equation 

. 
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where 

For model 1 the  value of sb  was 4.0 inches and Q was 0.5 inch. 

Models 2, 3, and 4 were designed by rep lac ing  t h e  nose poin t  of 
model 1 with sphe r i ca l  segments having a radius one-quarter, one-half, 
and three-quar te rs ,  respec t ive ly ,  of t h e  base radius.  On each model 
t h e  sphe r i ca l  segment and t h e  unmodified po r t ion  of t h e  model w e r e  
tangent a t  t he  meeting poin t ,  behind which each model was i d e n t i c a l  t o  
model 1. 

Model 5 ,  a cone cy l inder  of approximately t h e  same volume and 
l eng th  a s  model 1, was used merely fo r  comparison of drag with t h e  
o ther  configurations.  

On models 2 and 3 a small diameter rod of va r i ab le  length  was 
t e s t e d .  The diameter of t h e  rod used on model 2 w a s  0.020 inch and 
f o r  model 3 t h e  rod diameter w a s  0.040 inch, so t h a t  t h e  r a t i o  of rod 
diameter t o  nose radius would be constant. The t i p  of each rod was a 
10' half-angle cone. Figure 2 i s  a schematic drawing of a model nose 
wi th  a rod mounted. 

A l l  tests were run i n  a blowdown j e t  of t h e  Langley gas dynamics 

The Reynolds number of t h e  undisturbed flow was 1.83 x lo6  
l abora to ry  a t  a Mach number of 2.72. The tes t  s e c t i o n  measures 3 by 
5 inches. 
per  inch  and a l l  tests presented were run  a t  an angle of a t t a c k  of Oo. 

The strain-gage balance was read from a Brown potentiometer. Flow 
was not permitted t o  e n t e r  t he  s t i n g  mount a t  t h e  rear of t h e  model, and 
t h e  pressure  on t h e  base of t he  model was measured on a mercury manometer. 
The c o e f f i c i e n t s  were based on zero base drag. 
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The drag c o e f f i c i e n t s  of models 1 t o  5 were measured on t h e  drag 
balance. (See f i g .  3.) A s  was previously mentioned, t he  drag  increase 

i s  not severe f o r  a value of 

t h e  drag of model 2 (2 = 0.25) i s  about t h e  same a s  t h a t  of model 5 ,  

rn - - - 0.25. 
rb 

It i s  i n t e r e s t i n g  t o  note t h a t  

t h e  cone cylinder.  

Figure 4 i s  a s e r i e s  of shadow photographs showing model 3 with 
a rod of increas ing  length. The l i g h t  parabolic-shaped t r a c e  is  t h e  
i n t e r s e c t i o n  of t h e  shock wave and t h e  window. The l i n e s  i n  some of t h e  
photographs a r e  caused by a s m a l l  amount of compressor o i l  on t h e  su r -  
face  of t h e  windows. The photographs show t h a t  t h e  poin t  of separa t ion  
remains f a i r l y  near t h e  t i p  of t he  rod f o r  values of 2/rn up t o  3.5. 
With an add i t iona l  increase i n  rod length  the  separa t ion  poin t  jumps t o  
a po in t  downstream on t h e  rod. The d is tance  2 - x from t h e  poin t  of 
separa t ion  t o  t he  nose of t h e  model has not changed much f o r  values of 
2/rn from 3.8 t o  6.0. Observe t h a t  t h e  base of t he  separa t ion  region 
almost covers t h e  nose of t h e  model i n  t h e  photographs. 

An explanation of t h i s  phenomenon has not been o f fe red  yet;  however, 
recent  work by Donaldson and Lange ( r e f .  6 )  on flow separa t ion  gives 
some ins ight  i n t o  the  occurrence of t h i s  phenomenon. This work r e l a t e s  
t he  Reynolds number and condition of t he  boundary l aye r  on a f l a t  p l a t e  
t o  t h e  minimum pressure r i s e  assoc ia ted  with a shock wave which w i l l  
cause the boundary l a y e r  t o  separate.  
t h e  value of Ap/q 
proportional t o  t h e  s k i n - f r i c t i o n  coe f f i c i en t .  Thus, f o r  t h e  case of  
t h e  turbulen t  boundary l a y e r  on a f l a t  p l a t e  with a one-seventh-power 
ve loc i ty  p r o f i l e  

I n  reference 6 it i s  found t h a t  
which w i l l  cause t h e  boundary l a y e r  t o  separa te  i s  

and f o r  a laminar boundary l a y e r  

4 2  
(np/dcrit  = B(Rx> ( 3 )  
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where i s  the  minimum pressure r i s e  which w i l l  cause t h e  
boundary l a y e r  t o  separa te  and A and B a r e  constants wi th  values 
of 4.44 and 24.6, respec t ive ly .  The curves of equations ( 2 )  and (3)  
a r e  shown i n  f i g u r e  5. For a boundary l aye r  on a s lender  s h a f t ,  a s  
i n  t h e  present  instance,  where t h e  radius of t h e  s h a f t  i s  not l a rge  a s  
compared t o  t h e  boundary-layer thickness, t h e  preceding work i s  not 
d i r e c t l y  applicable.  However, t h e  r e s u l t s  show c e r t a i n  t r ends  which may 
be used i n  t h e  present study. Emphasis i s  placed, f i rs t ,  on t h e  small  
change i n  t h e  value of with Reynolds number f o r  a t u rbu len t  
boundary l a y e r  a s  compared with t h a t  of a laminar boundary l a y e r  and, 
second, on t h e  appreciable d i f fe rence  i n  t h e  value of 

t h e  two curves a t  any given Reynolds number f o r  t he  range shown. 

(Ap/q)crit 

(Ap/q)crit 

(Ap/q)crit f o r  

If these  r e s u l t s  are applied t o  t h e  separa t ion  of t he  boundery 
l a y e r  from the  s m a l l  rod, t he  conical shock wave which j u s t  precedes 
t h e  po in t  of separa t ion  must have exac t ly  t h a t  pressure rise which w i l l  
cause t h e  boundary l aye r  t o  separate a t  t h a t  p a r t i c u l a r  Reynolds number 
and type  of boundary layer.  Consequently, f o r  given conditions and 
configurations,  t he  separa t ion  point may be thought of as determined i n  
t h e  following manner: The cone ver tex  of t h e  separated region moves 
forward on t h e  rod (cone angle and Reynolds number R, decreasing) t o  
t h a t  po in t  where a f u r t h e r  decrease i n  cone angle would make t h e  pres- 
sure r i s e  i n s u f f i c i e n t  t o  separa te  the  boundary l aye r ,  

For sho r t  rod lengths t h e  separa t ion  poin t  i s  determined by the  
laminar v a r i a t i o n  of ( ~ g / q ) , , ~ ~  with R,. With increas ing  rod length  

t h e  laminar separa t ion  poin t  w i l l  move back from t h e  rod t i p  ( f i g .  6) 
u n t i l  t h e  value of Rx f o r  t r a n s i t i o n  is  reached. For longer rod 
lengths ,  t h e  separa t ion  must follow the  tu rbu len t  v a r i a t i o n  of 
Since experimental r e s u l t s  show t h a t  a t u rbu len t  boundary l aye r  requi res  
a l a r g e r  pressure r i s e  i n  order t o  separate,  t h e  cone angle of t h e  sepa- 
r a t i o n  must be grea te r ;  so, t h e  point of separa t ion  "jumps" back on t h e  
rod. 

(Ap/q)crit. 

I n  cases where t h e  sepa ra t ion  is laminar, t h e  Reynolds number R, 
i s  l o w .  Because of t h e  high Reynolds number per  inch a t  which t h i s  
experimental work was run, t h e  distance x from the  t i p  of t he  rod t o  
t h e  po in t  of separa t ion  was extremely shor t .  The shadow photographs 
( f i g .  6) of t h e  region were considerably enlarged and show t h a t  t h e r e  
i s  a d e f i n i t e  increase i n  t h e  value of x with increasing rod length.  
The smal l  arrows ind ica t e  t h e  approximate poin t  of separation. 

I n  reference 4 a shock wave was noted t o  o r ig ina t e  near t h e  poin t  
where t h e  flow rea t taches  t o  the  nose. (See f i g .  4. ) The ex is tence  of 
t h i s  shock wa.ve ind ica tes  t h a t  t h e  border of t he  separa t ion  zone does 
not m e e t  t h e  nose t a n g e n t i a l l y  and, therefore ,  must undergo a c e r t a i n  
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amount of turning. 
shock wave follows a p a t t e r n  s i m i l a r  t o  t h a t  shown 

The flow f i e l d  i n  t h e  region of t he  ba.se of t h i s  

/shock wave 
/ 

/ 

One stream l i n e  should e x i s t  which i n t e r s e c t s  t h e  nose a t  A. This 
i nd ica t e s  a s tagnat ion  point,  provided a t  t h i s  po in t  t h e  e f f e c t  of t h e  
l o c a l  shearing s t r e s s e s  on t h e  flow near t h e  sur face  balances t h e  e f f e c t  
of t he  pressure r i s e  across t h e  shock wave. The pressure recovered 
a t  A w i l l  not be la rge ,  but t h e  pressures  measured on the  sur face  of 
t h e  nose ( r e f .  4) c l e a r l y  ind ica t e  t h a t  a maximum i s  obtained i n  t h i s  
region. 

Figures 7 and 8 show the  decrease i n  t h e  sum of wave and f r i c t i o n  
drag obtained on models 2 and 3, respec t ive ly ,  when rods of varying 
length  are mounted. A conclusion may be reached from these  f igu res  
t h a t  t h e  lowest drag is  given by the  longest rod length  f o r  which 
laminar separa t ion  occurred. 

CONCLUDING IiEMARIcj 

An experimental i nves t iga t ion  was made of flow separa t ion  from a 
pointed rod p ro jec t ing  ahead of a b lunt  nose. It w a s  found t h a t  t h e  
work of Donaldson and Lange which r e l a t e s  t h e  sepa ra t ion  of a boundary 
l a y e r  t o  t h e  pressure r ise across t h e  accompanying shock wave could be 
used t o  expla in  t h e  present phenomenon. 

Strain-gage drag t e s t s  a t  a Mach number of 2.72 and a t  an angle 
of a t t ack  of 0' ind ica ted  t h a t  t h e  drag of bodies of revolu t ion  having 
near-hemispherical noses could be appreciably reduced through t h e  use 
of t hese  p ro jec t ing  rods. The lowest drag c o e f f i c i e n t  obtained with 
t h e  use of t h e  rods occurred when t h e  boundary l a y e r  separa ted  while 
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s t i l l  laminar. Thus, the  longest rod extension which s t i l l  maintained 
laminar separat ion r e su l t ed  i n  the  lowest drag coef f ic ien t .  

Results of drag tes ts  of several  noses without pro jec t ing  rods 
agreed q u a l i t a t i v e l y  with previous work; t h a t  is, t h e  drag increase 
w a s  very high f o r  la rge  values of the r a t i o  of nme  radius  t o  body 
radius ,  but f o r  a value of 0.25, the drag increase was small. 

Langley Aeronautical  Laboratory 
National Advisory Committee for Aeronautics 

Langley F ie ld ,  Va. 
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Model I ,  Basic configuration 
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Model 5, Cone-cylinder 
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Figure 1.- Sketch of models t e s t e d .  
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1 
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L-75098 
Figure 4.- Shadow pictures  of model 3 showing ef fec ts  of increasing rod 

length. 
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Figure 4.- Continued. 
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Figure 4. - Concluded. 
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L-75101 
Figure 6.- Enlarged shadow pictures of model 3 showing flow separation 

from rod. Arrows indicate separation. 
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Figure 6. - Concluded. 
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